ML的基础公式

都是一些基础公式。

  • KNN
  • Expected Conditional Entropy ,Cross Entropy Loss
  • Bias Variance Decomposition
  • Bagging with Generating Distribution,Bootstrap Aggregation,AdaBoost Key Concept,AdaBoost Algorithm
  • Random Forest
  • Bayes Optimality ,Na¨ıve Bayes,Gaussian Discriminant Analysis
  • Gradient Descent
  • Multi-class Classification
  • Activation Functions
  • Support Vector Machines
    https://tingfengx.github.io/uoftnotes/2019F/CSC311/intro_ml.pdf