都是一些基础公式。
- KNN
- Expected Conditional Entropy ,Cross Entropy Loss
- Bias Variance Decomposition
- Bagging with Generating Distribution,Bootstrap Aggregation,AdaBoost Key Concept,AdaBoost Algorithm
- Random Forest
- Bayes Optimality ,Na¨ıve Bayes,Gaussian Discriminant Analysis
- Gradient Descent
- Multi-class Classification
- Activation Functions
- Support Vector Machines
https://tingfengx.github.io/uoftnotes/2019F/CSC311/intro_ml.pdf